Antihypertensive Drugs Metabolism: An Update to Pharmacokinetic Profiles and Computational Approaches
نویسندگان
چکیده
Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs.
منابع مشابه
Evaluation of Pharmacokinetic Drug Interactions in Prescriptions of Intensive Care Unit (ICU) in a Teaching Hospital
Concomitant use of several drugs by ICU( Intensive Care Unit) patients is often unavoidable. In these patients, pharmacokinetic drug interactions are very likely. The current study was designed to evaluate these interactions in patients hospitalized in an ICU of a teaching hospital in Tehran, Iran. A questionnaire was designed and used to collect study data. The study was done in the ICU of a t...
متن کاملEvaluation of Pharmacokinetic Drug Interactions in Prescriptions of Intensive Care Unit (ICU) in a Teaching Hospital
Concomitant use of several drugs by ICU( Intensive Care Unit) patients is often unavoidable. In these patients, pharmacokinetic drug interactions are very likely. The current study was designed to evaluate these interactions in patients hospitalized in an ICU of a teaching hospital in Tehran, Iran. A questionnaire was designed and used to collect study data. The study was done in the ICU of a t...
متن کاملDrug interactions in hypertension.
Interactions between drugs and antihypertensive agents can result in either increased or decreased antihypertensive effects. These interactions may be pharmacokinetic or pharmacodynamic in type, resulting in either altered plasma drug concentrations or altered drug effects at similar plasma concentrations. Drugs may limit the absorption of antihypertensive agents, alter their metabolism through...
متن کاملA New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs
Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...
متن کاملA New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs
Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...
متن کامل